陳一文譯:“轉基因農作物產量高”是虛假廣告彌天大謊!
最好情況下,轉基因作物在產量方面并不比它們的非轉基因對應方表現更好,8200個大學為基礎的不同品種大豆試驗進行的檢查發現抗草甘膦大豆產量一貫比非轉基因大豆產量較低。產量下降原因的一半來自于轉基因轉換程序對作物的擾亂影響。2010年6月,美國西佛吉尼亞州對孟山都聲稱更高產量作假廣告開展法律調查。
《轉基因大豆:可持續?負責任?》研究報告:
轉基因作物的產量高不準確!
The claim that GM crops give higher yields is not accurate!
Monday, 13 September 2010 19:01
《歐洲轉基因觀察》網站 2010年9月13日發布
Pdf文件下載鏈接:http://www.gmwatch.org/files/GMsoy_SustainableResponsible_Sept2010_Summary.pdf
陳一文譯([email protected])
*
陳一文顧問按:
《科技日報》2010年02月24日《違反自然規律?方舟子:食用轉基因農作物風險被高估》對方舟子的觀點進行報道。其中對于“為什么許多國家,特別是部分歐洲國家至今反對轉基因農作物?”的解釋如下:
http://news.sciencenet.cn/htmlnews/2010/2/228489.shtm?id=228489
“除了政治、文化、經濟等原因外,歐洲部分國家對引進轉基因農作物猶豫不決的重要原因是這些國家的糧食自給有余,不急于通過轉基因技術提高糧食產量?!?/p>
“如果現在停止前進,中國將失去爭奪轉基因技術領先者的機會,”方舟子說。
在方舟子看來,發展轉基因農作物的主要原因與首位目的顯然是“提高糧食產量”。這種說法與黃大昉(中國農業科學院生物技術所研究員)2010年06月25日向十一屆全國人大常委會專題講座第十六講《農業轉基因技術和安全管理》講稿的宣傳一致:
“轉基因技術是保障糧食安全與農業可持續發展的重要措施……眾所周知,我國農業生產也面臨人口增加、資源短缺、環境惡化、氣候異常、市場競爭等越來越大的壓力,糧食中長期供求形勢依然非常嚴峻。多年來我國糧食增產主要依靠單產的提高,……但要想進一步提高則面臨越來越大的困難,必須突破現有技術的瓶頸。因此,我國要實現2020年增產糧食1000億斤的目標,保障14.5億人口的糧食安全;……這些目標的實現仍然離不開常規技術,但更需發展轉基因技術,將轉基因技術和常規技術緊密結合,尤其要加快高產、優質、抗逆、抗病蟲、多功能、高附加值等作物新品種的培育?!?/p>
方舟子與黃大昉的宣傳提出了一個最為簡單但是至關重要的問題:“轉基因農作物產量高”是真實情況,還是虛假廣告彌天大謊?
本節揭示的大量事實對這個問題給出了清楚無誤的回答!
*
AGRONOMIC AND ENVIRONMENTAL IMPACTS OF GM RR SOY
抗草甘膦除草劑大豆的園藝學與環境影響
Many of the promised benefits to farmers of GM crops, including GM RR soy, have not materialized. On the other hand, unexpected problems have arisen.
包括抗草甘膦除草劑大豆在內的關于轉基因作物對農民有益的許多允諾,并沒有實現。另外以方面,出現了許多未預料的問題。
==Yield==
==產量==
The claim that GM crops give higher yields is often uncritically repeated in the media. But this claim is not accurate.
媒體往往不加鑒別的重復聲稱轉基因作物提供更高的產量的說法。但是這種說法并不準確。
At best, GM crops have performed no better than their non-GM counterparts, with GM RR soy giving consistently lower yields. A review of over 8,200 university-based soybean varietal trials found a yield drag of between 6 and 10 per cent for GM RR soy compared with non-GM soy. [145] Controlled comparative field trials of GM and non-GM soy suggest that half the drop in yield is due to the disruptive effect of the GM transformation process. [146]
在最好的情況下,轉基因作物在產量方面并不比它們的非轉基因對應方表現的更好,其中抗草甘膦除草劑大豆的產量一貫比非轉基因大豆的產量較低。對于8200個大學為基礎的不同品種大豆試驗進行的檢查發現,抗草甘膦除草劑大豆產量比對應的非轉基因大豆低6%至 10%。[145] 轉基因大豆與非轉基因大豆對照比較田地試驗表明這種產量下降的一半來自于轉基因轉換程序的擾亂性影響。[146]
Data from Argentina show that GM RR soy yields are the same as, or lower than, non-GM soybean yields. [147] In 2009, Brazilian farmer organization FARSUL published the results of trials on 61 varieties of soybean (40 GM and 21 non-GM), showing that the average yield of non-GM soybeans was 9 per cent higher than GM, at a cost equivalent production. [148]
阿根廷的數據顯示那里的抗草甘膦除草劑大豆產量與對應的非轉基因大豆產量或者相同或者低。[147] 2009年,巴西的農民組織FARSUL公布了61個品種大豆的試驗結果(40種轉基因大豆與21種非轉基因品種),表明同樣成本生產條件下非轉基因大豆的平均產量比轉基因高9%。[148]
Claims of higher yields from Monsanto’s new generation of RR soybeans, RR 2 Yield, have not been borne out. A study carried out in five US states involving 20 farm managers who planted RR 2 soybeans in 2009 concluded that the new varieties “didn’t meet their [yield] expectations”. [149]In June 2010 the state of West Virginia launched an investigation of Monsanto for false advertising claims that RR 2 soybeans gave higher yields. [150]
聲稱孟山都公司新一代RR 2 Yield抗草甘膦大豆具有更高產量的說法,并沒有實現。在美國五個州進行了涉及2009年種植了RR 2 Yield轉基因大豆的20位農場經理的一項研究,他們的結論,新的品種“未能夠滿足他們(對產量)的期望”。[149] 2010年6月,美國西佛吉尼亞州對孟山都公司聲稱新一代RR 2 Yield抗草甘膦大豆具有更高產量的作假廣告內容開展法律調查。[150]
A possible explanation for the lower yields of GM RR soy is that the transgenic modification alters the plant’s physiology so that it takes up nutrients less effectively. One study found that GM RR soy takes up the important plant nutrient manganese less efficiently than non-GM soy. [151] Another possibility is that the glyphosate used with GM RR soy is responsible for the yield decrease, as it reduces nutrient uptake in plants and makes them more susceptible to disease. A third possibility is that the new added biological function that enables the GM soy to resist glyphosate involves additional energy consumption by the plant. As a result, less energy could be left over for grain formation and maturity. The genetic engineering process permitted a new function, but never made available additional energy.
對抗草甘膦除草劑大豆較低產量的可能的解釋是,轉基因改造改變了作物的生理學使它低效吸收養分。一項研究發現,抗草甘膦除草劑大豆比非轉基因大豆較低效吸收錳這個重要作物養分。[151] 另外一種可能性是,與抗草甘膦除草劑大豆一起使用的草甘膦除草劑對產量降低有責任,因為它減少作物的養分吸收從而使它們對病害更為脆弱。第三項可能性是,增加了的允許轉基因大豆抵抗草甘膦的額外生物功能對作物涉及消耗額外的能量。作為結果,剩余較少的能量用于谷粒與成熟。基因工程過程允許了新的功能,但是沒有創造額外的能量。
A US Department of Agriculture report confirms the poor yield performance of GM crops, saying, “GE crops available for commercial use do not increase the yield potential of a variety. In fact, yield may even decrease.... Perhaps the biggest issue raised by these results is how to explain the rapid adoption of GE crops when farm financial impacts appear to be mixed or even negative.” [152]
美國農業部的一個報告確認了轉基因大豆作物低劣的產量表現,該報告說,“適合于商業使用的轉基因作物并不增加一個品種的產量潛力,產量甚至可能降低……也許這些結果提出的最大問題是如何解釋轉基因作物快速的應用,而農場財務影響顯示混合或甚至負面?!?/STRONG>[152]
The failure of GM to increase yield potential is emphasised in 2008 by the United Nations IAASTD report on the future of farming. [153] This report, authored by 400 international scientists and backed by 58 governments, says that yields of GM crops are “highly variable” and in some cases, “yields declined”. The report notes, “Assessment of the technology lags behind its development, information is anecdotal and contradictory, and uncertainty about possible benefits and damage is unavoidable.”
2008年,聯合國的IAASTD關于未來農業的報告強調了轉基因未能夠實現增加產量潛力的失敗。[153]獲得58個國家政府支持的400位國際科學家為作者的該報告說,轉基因作物的產量“高度不同”而且在某些情況下“產量下降”。報告表明,“對該項技術的評估落在它的發展的后面,信息趣聞多而相互矛盾,對可能的益處沒有把握以及損害是不可避免的?!?/STRONG>
The definitive study to date on GM crops and yield is “Failure to yield: Evaluating the performance of genetically engineered crops”, [154] by former US Environmental Protection Agency (EPA) scientist, Dr Doug Gurian-Sherman. It uses data from published, peer-reviewed studies with well-designed experimental controls. The study distinguishes between intrinsic yield (also called potential yield), defined as the highest yield which can be achieved under ideal conditions, and operational yield, the final yield achieved under normal field conditions when crop losses due to pests, drought, or other environmental stresses are factored in.
對轉基因作物與產量到目前為止的決定性研究是美國環境保護局(EPA)前任科學家Doug Gurian-Sherman博士的“未能實現的產量:評價基因工程作物的表現”。[154] 它使用的數據來自公開發表的經同行審查的良好涉及的試驗對照。該項研究識別了本質產量(也稱為潛在產量),界定為在理想條件下能夠實現的最高產量;以及操作產量,即正常農田條件下蟲害、干旱或其他環境影響因素涉及在內的最終產量。
The study also separates out effects on yield caused by conventional breeding methods and those caused by GM traits. It has become common for biotech companies to use conventional breeding and marker assisted breeding to produce higher-yielding crops and to engineer in their own patented genes for herbicide tolerance or insect resistance. In such cases, higher yields are not due to genetic engineering but to conventional breeding. “Failure to yield” teases out these distinctions and analyzes the contributions made by genetic engineering and conventional breeding to increasing yield.
該項研究同時分開了傳統繁育方法對產量的影響與轉基因特征對產量造成的影響。生物技術公司普遍利用常規育種和分子標記輔助育種來實現更高的產量作物,并且將這些包括在自己的耐除草劑或抗蟲基因專利中。在這種情況下,更高的產量不是由于基因工程而是由于傳統繁殖。“未能實現的產量”梳理出這些區別并且分析了基因工程的貢獻與傳統繁殖對增加產量的貢獻。
The study concludes that GM herbicide-resistant soybeans have not increased yields. It further concludes that GM crops in general “have made no inroads so far into raising the intrinsic or potential yield of any crop. By contrast, traditional breeding has been spectacularly successful in this regard; it can be solely credited with the intrinsic yield increases in the United States and other parts of the world that characterized the agriculture of the twentieth century.”
該項研究結論,轉基因抗除草劑大豆并沒有增加產量。它進一步結論,轉基因作物一般來說“沒有開辟任何一種作物提高本質或者潛在產量的進展。與此相反,傳統繁殖在這一方面尤其有效;成為20世紀農業特征的美國以及世界其他地方本質產量的增加可以獨一無二地歸功于它(傳統繁殖)。
The author comments, “If we are going to make headway in combating hunger due to overpopulation and climate change, we will need to increase crop yields. Traditional breeding outperforms genetic engineering hands down.” [155]
作者的看法,“如果我們要戰勝人口過多與氣候變化導致的饑餓,我們需要增加作物產量。傳統繁殖勝過基因工程看似容易的結果?!盵155]
References
參考文獻:
[145] Benbrook C. 1999. Evidence of the magnitude and consequences of the Roundup Ready soybean yield drag from university-based varietal trials in 1998. Ag BioTech InfoNet Technical Paper No 1, Jul 13.
[145] Benbrook C. 1999。1988年進行的以大學為基礎不同品種抗草甘膦除草劑大豆試驗產量低的證據與后果。農業生物技術網技術論文第1號,7月13日。
http://www.mindfully.org/GE/RRS-Yield-Drag.htm
[146] Elmore R.W., Roeth, F.W., Nelson, L.A., Shapiro, C.A., Klein, R.N., Knezevic, S.Z., Martin, A. 2001. Glyphosate-resistant soyabean cultivar yields compared with sister lines. Agronomy Journal 93, 408–412. 2001。
[146] Elmore R.W., Roeth, F.W., Nelson, L.A., Shapiro, C.A., Klein, R.N., Knezevic, S.Z., Martin, A.2001.抗草甘膦除草劑大豆栽培品種與姊妹系比較的產量。園藝學雜志,93,408-412.
[147] Qaim, M. and G. Traxler. 2005. Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects. Agricultural Economics 32, 73–86.
[147] Qaim, M. and G. Traxler. 2005。在阿根廷的抗草甘膦除草劑大豆:農場層次與聚集福利影響。農業經濟學,32,73-86。
[148] FARSUL. 2009. Divulgados resultados do Programa de Avaliação de Cultivares de Soja (Published results of the Program Evaluation of soybean cultivars). 17/06/2009.
[148] FARSUL. 2009。對大豆栽培品種計劃評價的公布結果,17/06/2009。
http://www.farsul.org.br/pg_informes.php?id_noticia=870
[149] Kaskey, J. 2009. Monsanto facing “distrust” as it seeks to stop DuPont. Bloomberg, November 11.
[149] Kaskey, J. 2009。孟山都公司面臨“不信任”隨著它尋求終止杜邦。Bloomberg,11月11日。
[150] Gillam, C. 2010. Virginia probing Monsanto soybean seed pricing. West Virginia investigating Monsanto for consumer fraud. Reuters, June 25.
[150] Gillam, C. 2010。維吉尼亞深入調查孟山都公司大豆種子的定價制度。西維吉尼亞州因欺詐消費者調查孟山都公司。路透社,6月25日。
http://www.reuters.com/article/idUSN2515475920100625
[151] Gordon, B., 2006. Manganese nutrition of glyphosate resistant and conventional soybeans. Better Crops 91, April.
[151] Gordon, B., 2006。抗草甘膦大豆與傳統大豆的錳養分。優良作物,91,4月。
http://www.ipni.net/ppiweb/bcrops.nsf/$webindex/70ABDB50A75463F085257394
[152] US Department of Agriculture. 2002. The adoption of bioengineered crops.
[152] 美國農業部,2002。生物工程作物的應用。
http://www.ers.usda.gov/publications/aer810/aer810.pdf
[153] Beintema, N. et al. 2008. International Assessment of Agricultural Knowledge, Science and Technology for Development: Global Summary for Decision Makers (IAASTD).
[153] Beintema, N. et al. 2008。對農業知識、科學與技術發展的國際評估:供決策者的全球概述(IAASTD)。
http://www.agassessment.org/index.cfm?Page=IAASTD Reports&ItemID=2713
[154] Gurian-Sherman, D. 2009. Failure to yield: Evaluating the performance of genetically engineered crops. Union of Concerned Scientists.
[154] Gurian-Sherman, D. 2009。產量的失?。涸u價基因工程作物的表現,擔心的科學家聯盟。
http://www.ucsusa.org/assets/documents/food_and_agriculture/failure-to-yield.pdf
[155] Gurian-Sherman, D. 2009. Press release, Union of Concerned Scientists, April 14.
[155] Gurian-Sherman, D. 2009。未能實現的產量:評價基因工程作物的表現,有所擔心的科學家聯盟。
http://www.ucsusa.org/news/press_release/ge-fails-to-increase-yields-0219.html
相關文章
「 支持烏有之鄉!」
您的打賞將用于網站日常運行與維護。
幫助我們辦好網站,宣傳紅色文化!